Datenbank-Module hinzugefügt

This commit is contained in:
Markus Clauß 2022-09-27 08:18:52 +02:00
parent f50f1699bf
commit f861274928
14 changed files with 818 additions and 13 deletions

View File

@ -1,4 +1,5 @@
link: link:
pip install -e ./ pip install -e ./
doc:
python setup.py build_sphinx

View File

@ -1,11 +1,14 @@
# main __init__.py # main __init__.py
from .analysis import * from .analysis import *
from .helper import *
from .io import * from .io import *
from .models import *
from .versuche import * from .versuche import *
__all__ = [ __all__ = [
# IO # IO
"connect_mongo_db",
"read_geosys", "read_geosys",
# Versuche # Versuche
"TestSchichtenverbundV2GeoSys", "TestSchichtenverbundV2GeoSys",

View File

@ -0,0 +1,3 @@
from .filehasher import calc_hash_of_file
__all__ = ["calc_hash_of_file"]

View File

@ -0,0 +1,25 @@
import hashlib
from io import BytesIO
def calc_hash_of_file(file):
""" calculate the hash of the file """
#read file
with open(file, 'rb') as fh:
buf = BytesIO(fh.read())
algo = hashlib.sha1()
buffer_size = 65536
buffer_size = buffer_size * 1024 * 1024
while True:
data = buf.read(buffer_size)
if not data:
break
algo.update(data)
hex = algo.hexdigest()
return hex

View File

@ -1,3 +1,4 @@
from .geosys import read_geosys from .geosys import read_geosys
from .mongo import connect_mongo_db
__all__ = ["read_geosys"] __all__ = ["connect_mongo_db", "read_geosys"]

34
pytestpavement/io/hash.py Normal file
View File

@ -0,0 +1,34 @@
import hashlib
import os
from io import BytesIO
def hash_file(f: BytesIO, buffer_size=65536, algo='SH1') -> str:
"""
Generate the MD5 Hash of the file and return
f of
buffer_size in MB
"""
algorithm = ['MD5', 'SH1']
assert algo in algorithm
if algo == 'MD5':
algo = hashlib.md5()
else:
algo = hashlib.sha1()
buffer_size = buffer_size * 1024 * 1024
while True:
data = f.read(buffer_size)
if not data:
break
algo.update(data)
algohex = algo.hexdigest()
f.seek(0)
return algohex

View File

@ -0,0 +1,13 @@
import mongoengine
def connect_mongo_db(username='admin',
password='admin',
host='localhost',
authentication_source='admin'):
mongoengine.connect('labtests',
username=username,
password=password,
host=host,
authentication_source=authentication_source)

View File

@ -0,0 +1,10 @@
from .citt import *
from .material import *
from .sheartest import *
__all__ = [
# Spaltzug
"CITTSiffness",
#Dynamischer Schertest
"DynamicShearTestExtension",
]

View File

@ -0,0 +1,80 @@
import datetime
from mongoengine import *
from .material import Material
class CyclicIndirectTensileTest(Document):
date = DateTimeField(default=datetime.datetime.now,
wtf_options={"render_kw": {
"step": "60"
}})
standard = StringField(default='TP Asphalt Teil 24')
lab = StringField(default='TU Dresden', required=True)
auditor = StringField(default=None)
machine = StringField(default=None)
filehash = StringField(required=True)
project = StringField(required=True)
workpackage = StringField()
material = ReferenceField(Material, required=True)
meta = {
'allow_inheritance': True,
'index_opts': {},
'index_background': True,
'index_cls': False,
'auto_create_index': True,
'collection': 'citt',
}
class CITTSiffness(CyclicIndirectTensileTest):
#metadata
f_set = FloatField()
sigma_set = FloatField()
T_set = FloatField()
#results
stiffness = FloatField()
#fit parameter
## F
fit_a_F = FloatField()
fit_b_F = FloatField()
fit_d_F = FloatField()
fit_e_F = FloatField()
fit_f_F = FloatField()
r2_F = FloatField()
## S1
fit_a_s_hor_1 = FloatField()
fit_b_s_hor_1 = FloatField()
fit_d_s_hor_1 = FloatField()
fit_e_s_hor_1 = FloatField()
fit_f_s_hor_1 = FloatField()
r2_s_hor_1 = FloatField()
## S2
fit_a_s_hor_2 = FloatField()
fit_b_s_hor_2 = FloatField()
fit_d_s_hor_2 = FloatField()
fit_e_s_hor_2 = FloatField()
fit_f_s_hor_2 = FloatField()
r2_s_hor_2 = FloatField()
## S-Sum
fit_a_s_hor_sum = FloatField()
fit_b_s_hor_sum = FloatField()
fit_d_s_hor_sum = FloatField()
fit_e_s_hor_sum = FloatField()
fit_f_s_hor_sum = FloatField()
r2_s_hor_sum = FloatField()
# data
time = ListField(FloatField())
F = ListField(FloatField())
N = ListField(IntField())
s_hor_1 = ListField(FloatField())
s_hor_2 = ListField(FloatField())

View File

@ -0,0 +1,53 @@
import datetime
from mongoengine import *
class Material(Document):
date = DateTimeField(default=datetime.datetime.now,
wtf_options={"render_kw": {
"step": "60"
}})
tags = ListField(StringField())
meta = {
'allow_inheritance': True,
'index_opts': {},
'index_background': True,
'index_cls': False,
'auto_create_index': True,
'collection': 'materials'
}
class Asphalt(Material):
name = StringField()
material = StringField()
young_modulus = FloatField()
class Bitumen(Material):
name = StringField()
material = StringField()
young_modulus = FloatField()
class Expoxy(Material):
name = StringField()
material = StringField()
young_modulus = FloatField()
class Dummy(Material):
name = StringField()
material = StringField()
young_modulus = FloatField()

View File

@ -0,0 +1,84 @@
import datetime
from mongoengine import *
from .material import Material
class DynamicShearTest(Document):
date = DateTimeField(default=datetime.datetime.now,
wtf_options={"render_kw": {
"step": "60"
}})
standard = StringField(default='TP Asphalt Teil 24')
lab = StringField(default='TU Dresden', required=True)
auditor = StringField(default=None)
machine = StringField(default=None)
filehash = StringField(required=True)
project = StringField(required=True)
workpackage = StringField()
material1 = ReferenceField(Material, required=True)
material2 = ReferenceField(Material, required=True)
bounding = ReferenceField(Material, required=True)
meta = {
'allow_inheritance': True,
'index_opts': {},
'index_background': True,
'index_cls': False,
'auto_create_index': True,
'collection': 'sheartest',
}
class DynamicShearTestExtension(DynamicShearTest):
#metadata
f_set = FloatField()
sigma_hor_set = FloatField()
T_set = FloatField()
s_set = FloatField()
#results
stiffness = FloatField()
#fit parameter
## F
fit_a_F = FloatField()
fit_b_F = FloatField()
fit_d_F = FloatField()
fit_e_F = FloatField()
fit_f_F = FloatField()
r2_F = FloatField()
## S1
fit_a_s_hor_1 = FloatField()
fit_b_s_hor_1 = FloatField()
fit_d_s_hor_1 = FloatField()
fit_e_s_hor_1 = FloatField()
fit_f_s_hor_1 = FloatField()
r2_s_hor_1 = FloatField()
## S2
fit_a_s_hor_2 = FloatField()
fit_b_s_hor_2 = FloatField()
fit_d_s_hor_2 = FloatField()
fit_e_s_hor_2 = FloatField()
fit_f_s_hor_2 = FloatField()
r2_s_hor_2 = FloatField()
## S-Sum
fit_a_s_hor_sum = FloatField()
fit_b_s_hor_sum = FloatField()
fit_d_s_hor_sum = FloatField()
fit_e_s_hor_sum = FloatField()
fit_f_s_hor_sum = FloatField()
r2_s_hor_sum = FloatField()
# data
time = ListField(FloatField())
F = ListField(FloatField())
N = ListField(IntField())
s_hor_1 = ListField(FloatField())
s_hor_2 = ListField(FloatField())

View File

@ -0,0 +1,484 @@
from .fit import model_cos
class DataSineLoad():
"""
Base class for lab tests with sine load
"""
def __init__(self, fname: str, debug: bool = False):
self.meta = {'d': 150, 'speciment_height': 60}
self.file = fname
self.val_col_names = ['time', 'T', 'f', 'N', 'F', 's_hor_sum']
# Header names after standardization; check if exists
self.val_header_names = ['speciment_height']
self._set_parameter()
self._file_to_bytesio()
self._calc_hash()
self._read_data()
self._standardize_data()
self._standardize_meta()
if not debug:
self._calc_missiong_values()
self._set_units()
self._validate_data()
self._postprocess_data()
self._split_data()
self._select_data()
self._fit_data()
def _set_parameter(self):
self.split_data_based_on_parameter = ['f']
self.col_as_int = ['N']
self.col_as_float = ['T', 'F', 's_piston', 's_hor_1', 'f', 's_hor_sum']
self.number_of_load_cycles_for_analysis = 5
self.unit_s = 1 #mm
self.unit_F = 1 #N
self.unit_t = 1 / 1000. #s
def _file_to_bytesio(self):
""" read data and save in memory """
with open(self.file, 'rb') as fh:
self.buf = BytesIO(fh.read())
def _calc_hash(self):
""" calculate the hash of the file """
#read t
algo = hashlib.sha1()
buffer_size = 65536
buffer_size = buffer_size * 1024 * 1024
while True:
data = self.buf.read(buffer_size)
if not data:
break
algo.update(data)
self.hex = algo.hexdigest()
self.buf.seek(0)
def _read_data(self, encoding='latin-1', skiprows=14, hasunits=True):
"""
read data from Labor Hart, Spaltzugversuche Steifigkeit
"""
# metadata from file
meta = {}
splitsign = ':;'
with open(self.file, 'r', encoding=encoding) as f:
count = 0
for line in f:
count += 1
#remove whitespace
linesplit = line.strip()
linesplit = linesplit.split(splitsign)
if len(linesplit) == 2:
meta[linesplit[0]] = linesplit[1]
if count >= skiprows:
break
# data
data = pd.read_csv(self.file,
encoding=encoding,
skiprows=skiprows,
decimal=',',
sep=';')
## add header to df
with open(self.file, 'r', encoding=encoding) as f:
count = 0
for line in f:
count += 1
if count >= skiprows:
break
head = line.split(';')
data.columns = head
sigma = float(
os.path.split(self.file)[-1].split('MPa')[0].strip().replace(
',', '.'))
data['sigma'] = sigma
#clean data
data = data.dropna(axis=1)
#define in class
self.meta = meta
self.data = data
return True
def _validate_data(self):
""" check if all column names are standardized"""
cols = self.data.columns
for val in self.val_header_names:
if not val in self.meta.keys():
raise ValueError(f"{val} not in header of data")
for col in self.val_col_names:
if not col in cols:
raise ValueError(f'{col} not standardized')
def _standardize_meta(self):
keys = list(self.meta.keys())
for key in keys:
if any(map(key.__contains__, ['Probenbezeichnung'])):
self.meta['speciment'] = self.meta.pop(key)
elif any(map(key.__contains__, ['Datum/Uhrzeit'])):
self.meta['datetime'] = self.meta.pop(key)
try:
self.meta['datetime'] = pd.to_datetime(
self.meta['datetime'])
except:
pass
elif any(map(key.__contains__, ['Probenhöhe'])):
self.meta['speciment_height'] = float(
self.meta.pop(key).replace(',', '.'))
elif any(map(key.__contains__, ['Probendurchmesser'])):
self.meta['speciment_diameter'] = float(
self.meta.pop(key).replace(',', '.'))
elif any(map(key.__contains__, ['Solltemperatur'])):
self.meta['temperature'] = float(
self.meta.pop(key).replace(',', '.'))
elif any(map(key.__contains__, ['Prüfbedingungen'])):
self.meta['test_version'] = self.meta.pop(key)
elif any(map(key.__contains__, ['Name des VersAblf'])):
self.meta['test'] = self.meta.pop(key)
elif any(map(key.__contains__, ['Prüfer'])):
self.meta['examiner'] = self.meta.pop(key)
return True
def _standardize_data(self):
colnames = list(self.data.columns)
for i, col in enumerate(colnames):
if any(map(col.__contains__, ['TIME'])):
colnames[i] = 'time'
elif any(map(col.__contains__, ['Temperatur'])):
colnames[i] = 'T'
elif any(map(col.__contains__, ['Load'])):
colnames[i] = 'F'
elif any(map(col.__contains__, ['Position'])):
colnames[i] = 's_piston'
elif any(map(col.__contains__, ['FREQUENZ'])):
colnames[i] = 'f'
elif any(map(col.__contains__, ['mpulsnummer_fortlaufend'])):
colnames[i] = 'Ncum'
elif any(map(col.__contains__, ['Impulsnummer'])):
colnames[i] = 'N'
elif any(map(col.__contains__, ['SENSOR 4'])):
colnames[i] = 's_hor_1'
elif any(map(col.__contains__, ['SENSOR Extension'])):
colnames[i] = 's_hor_2'
self.data.columns = colnames
def _set_units(self):
for col in ['s_hor_sum', 's_hor_1', 's_hor_2']:
self.data[col] = self.data[col].mul(self.unit_s)
for col in ['F']:
self.data[col] = self.data[col].mul(self.unit_F)
for col in ['time']:
self.data[col] = self.data[col].mul(self.unit_t)
return True
def _calc_missiong_values(self):
cols = self.data.columns
if not 's_hor_sum' in cols:
self.data['s_hor_sum'] = self.data[['s_hor_1',
's_hor_2']].sum(axis=1)
def _postprocess_data(self):
#set dtypes:
for col in self.col_as_int:
self.data[col] = self.data[col].astype('int')
for col in self.col_as_float:
try:
self.data[col] = self.data[col].astype('float')
except:
pass
#set index
self.data = self.data.set_index('time')
return True
def _split_data(self):
data_gp = self.data.groupby(self.split_data_based_on_parameter)
data_list = []
for idx, d in data_gp:
idx_diff = np.diff(d.index)
dt_mean = idx_diff.mean()
gaps = idx_diff > (2 * dt_mean)
has_gaps = any(gaps)
if has_gaps == False:
data_list.append(d)
else:
idx_gaps = (np.where(gaps)[0] - 1)[0]
data_list.append(d.iloc[0:idx_gaps])
#add self.
if len(data_list) == 0:
self.num_tests = 0
self.data = data_list[0]
else:
self.num_tests = len(data_list)
self.data = data_list
#break
def _select_data(self):
""" select N load cycles from original data """
def sel_df(df, num=5):
N = df['N'].unique()
if len(N) > num:
df_sel = df[(df['N'] >= N[-num - 1, ]) & (df['N'] <= N[-2, ])]
return df_sel
else:
ValueError(
'Number of load cycles smaller than selectect values')
if not isinstance(self.data, list):
df_sel = [
sel_df(self.data, num=self.number_of_load_cycles_for_analysis)
]
else:
df_sel = []
for d in self.data:
d_sel = sel_df(d, num=self.number_of_load_cycles_for_analysis)
df_sel.append(d_sel)
# replace data
self.data = df_sel
return True
def _fit_data(self):
self.fit = []
for idx_data, data in enumerate(self.data):
if data is None: continue
data.index = data.index - data.index[0]
res = {}
columns_analyse = [
'F',
's_hor_sum',
's_hor_1',
's_hor_2',
's_piston',
]
ylabel_dict = {
'F': 'Kraft in N',
's_hor_sum': 'Verformung (Summe) in mm',
's_piston': 'Verformung Kolbenweg in mm',
's_hor_1': 'Verformung ($S_1$) in mm',
's_hor_2': 'Verformung ($S_2$) in mm'
}
fig, axs = plt.subplots(len(columns_analyse),
1,
figsize=(8, len(columns_analyse) * 2),
sharex=True)
for idxcol, col in enumerate(columns_analyse):
if not col in data.columns: continue
x = data.index.values
y = data[col].values
# Fourier Transformation
dt = np.diff(x).mean() #mean sampling rate
n = len(x)
res[f'psd_{col}'] = sfft.rfft(y) #compute the FFT
res[f'freq_{col}'] = sfft.rfftfreq(n, dt)
# Fitting
freq = np.round(data['f'].mean(), 3)
sigma = np.round(data['sigma'].mean(), 3)
res_step1 = fit_sin_anstieg(x, y)
mod = lm.models.Model(model_cos)
mod.set_param_hint(
'd',
value=res_step1['offset'],
#min=res_step1['offset'] - 0.5*abs(res_step1['offset']),
#max=res_step1['offset'] + 0.5*abs(res_step1['offset'])
)
mod.set_param_hint(
'a',
value=res_step1['amp'],
#min=res_step1['amp'] - 0.5*abs(res_step1['amp']),
#max=res_step1['amp'] + 0.5*abs(res_step1['amp'])
)
mod.set_param_hint('b', value=res_step1['phase'])
mod.set_param_hint('e', value=0) #, min = -0.5, max = 0.5)
mod.set_param_hint('f', value=freq, vary=True)
parms_fit = [
mod.param_hints['a']['value'],
mod.param_hints['b']['value'],
mod.param_hints['d']['value'],
mod.param_hints['e']['value'],
mod.param_hints['f']['value']
]
abweichung = []
chis = []
chis_red = []
results = []
r2 = []
methods = ['leastsq', 'powell']
dof = len(y) - len(parms_fit)
for method in methods:
#print(method)
result = mod.fit(y, t=x, method=method, verbose=False)
r2temp = 1 - result.residual.var() / np.var(y)
# r2temp = result.redchi / np.var(yfit, ddof=2)
if r2temp < 0.:
r2temp = 0
r2.append(r2temp)
chi = result.chisqr
chis_red.append(result.redchi)
#print(chi)
abweichung.append(sf.gammaincc(dof / 2., chi / 2))
chis.append(chi)
results.append(result)
ret = {}
best = np.nanargmax(r2)
ret['model'] = mod
ret['x'] = x
ret['result'] = results[best]
res[f'r2_{col}'] = r2[best]
res[f'fit_a_{col}'] = results[best].best_values['a']
res[f'fit_b_{col}'] = results[best].best_values['b']
res[f'fit_d_{col}'] = results[best].best_values['d']
res[f'fit_e_{col}'] = results[best].best_values['e']
res[f'fit_f_{col}'] = results[best].best_values['f']
res['f'] = freq
res['sigma'] = sigma
res['filename'] = self.file
yreg = model_cos(x, res[f'fit_a_{col}'], res[f'fit_b_{col}'],
res[f'fit_d_{col}'], res[f'fit_e_{col}'],
res[f'fit_f_{col}'])
plt.sca(axs[idxcol])
plt.plot(x, y, label='Messdaten')
r2 = res[f'r2_{col}']
lstr = f'Fit (r² = {r2:0.4f})'
plt.plot(x, yreg, label=lstr)
plt.xlim([x[0], x[-1]])
plt.xlabel('Zeit in s')
plt.ylabel(ylabel_dict[col])
plt.legend()
#data[['F', 's_hor_sum']].plot(subplots=True)
plt.tight_layout()
ofile = self.file
ofile = ofile.replace('/raw/', '/plots/')[:-4]
ofile = ofile + f'_{idx_data:03.0f}.pdf'
ofolder = os.path.split(ofile)[0]
if not os.path.exists(ofolder):
os.makedirs(ofolder)
plt.savefig(ofile)
plt.close()
## Stiffness
deltaF = res['fit_a_F']
nu = 0.298
h = float(self.meta['speciment_height'])
deltaU = res['fit_a_s_hor_sum']
res['E'] = (deltaF * (0.274 + nu)) / (h * deltaU)
self.fit.append(res)
#break
self.fit = pd.DataFrame.from_records(self.fit)

View File

@ -0,0 +1,5 @@
import numpy as np
def model_cos(t, a, b, d, e, f):
return a * np.cos(2 * np.pi * f * t + b) + e * t + d

View File

@ -1,17 +1,26 @@
from setuptools import setup from setuptools import setup
from sphinx.setup_command import BuildDoc
cmdclass = {'build_sphinx': BuildDoc}
name = 'PyTestPavement'
version = '0.01'
release = '0.0.1'
setup( setup(
name='PyTestPavement', name=name,
version='0.1.0',
author='Markus Clauß', author='Markus Clauß',
author_email='markus.clauss@tu-dresden.de', author_email='markus.clauss@tu-dresden.de',
packages=[ version=release,
'pytestpavement', cmdclass=cmdclass,
], # these are optional and override conf.py settings
#scripts=['bin/script1','bin/script2'], command_options={
#url='http://pypi.python.org/pypi/PackageName/', 'build_sphinx': {
#license='LICENSE.txt', 'project': ('setup.py', name),
description='', 'version': ('setup.py', version),
#long_description=open('README.txt').read(), 'release': ('setup.py', release),
install_requires=['lmfit', 'pandas', 'numpy', 'scipy'], 'source_dir': ('setup.py', 'doc')
}
},
install_requires=['lmfit', 'pandas', 'numpy', 'scipy', 'mongoengine'],
packages=['pytestpavement'],
) )