Sheartest added

This commit is contained in:
Markus Clauß 2022-09-27 20:18:52 +02:00
parent f861274928
commit 6e4bef19cb
15 changed files with 807 additions and 511 deletions

View File

@ -3,18 +3,5 @@
from .analysis import * from .analysis import *
from .helper import * from .helper import *
from .io import * from .io import *
from .labtests import *
from .models import * from .models import *
from .versuche import *
__all__ = [
# IO
"connect_mongo_db",
"read_geosys",
# Versuche
"TestSchichtenverbundV2GeoSys",
"TestSchichtenverbundV2GeoSysExtractedEMPA",
# Analyse
"fit_cos_eval",
"fit_cos_simple",
"fit_cos",
]

View File

@ -73,7 +73,7 @@ def fit_cos_simple(x, y, freq=10.0):
} }
def fit_cos(x, y, freq=10.0): def fit_cos(x, y, freq=10.0, constfreq=False):
""" """
sine regression sine regression
@ -92,8 +92,6 @@ def fit_cos(x, y, freq=10.0):
res_step1 = fit_cos_simple(x, y, freq=freq) res_step1 = fit_cos_simple(x, y, freq=freq)
# step 2: lmfit # step 2: lmfit
res = {}
mod = lm.models.Model(cosfunc) mod = lm.models.Model(cosfunc)
mod.set_param_hint( mod.set_param_hint(
@ -106,9 +104,9 @@ def fit_cos(x, y, freq=10.0):
mod.set_param_hint( mod.set_param_hint(
'w', 'w',
value=freq, value=freq,
vary=True, vary=not constfreq,
#min=res_step1['freq'] - 0.3 * abs(res_step1['freq']), #min=freq - 0.1 * freq,
#max=res_step1['freq'] + 0.3 * abs(res_step1['freq']) #max=freq + 0.1 * freq,
) )
mod.set_param_hint('p', value=res_step1['phase'], vary=True) mod.set_param_hint('p', value=res_step1['phase'], vary=True)
@ -147,7 +145,7 @@ def fit_cos(x, y, freq=10.0):
chis.append(chi) chis.append(chi)
results.append(result) results.append(result)
ret = {} res = {}
best = np.nanargmax(r2) best = np.nanargmax(r2)
res[f'amp'] = results[best].best_values['A'] res[f'amp'] = results[best].best_values['A']

View File

@ -2,13 +2,9 @@ import hashlib
from io import BytesIO from io import BytesIO
def calc_hash_of_file(file): def calc_hash_of_bytes(buf: BytesIO):
""" calculate the hash of the file """ """ calculate the hash of the file """
#read file
with open(file, 'rb') as fh:
buf = BytesIO(fh.read())
algo = hashlib.sha1() algo = hashlib.sha1()
buffer_size = 65536 buffer_size = 65536
@ -23,3 +19,15 @@ def calc_hash_of_file(file):
hex = algo.hexdigest() hex = algo.hexdigest()
return hex return hex
def calc_hash_of_file(file):
""" calculate the hash of the file """
#read file
with open(file, 'rb') as fh:
buf = BytesIO(fh.read())
hex = calc_hash_of_bytes(buf)
return hex

View File

@ -72,9 +72,12 @@ def read_geosys(filename,
#Einlesen #Einlesen
with open(filename, 'r', encoding=encoding) as inFile: with open(filename, 'r', encoding=encoding) as inFile:
reader = csv.reader(inFile, delimiter='\t') reader = csv.reader(inFile, delimiter='\t')
try:
for row in reader: for row in reader:
if len(row) > 2: if len(row) > 2:
data.append(row) data.append(row)
except:
pass
if debug: if debug:
print('Anz. Datensätze: ', str(len(data)), getsizeof(data)) print('Anz. Datensätze: ', str(len(data)), getsizeof(data))
@ -189,14 +192,12 @@ def read_geosys(filename,
print(data_head, data_units) print(data_head, data_units)
## Bezeichnungen der Daten normalisieren ## Bezeichnungen der Daten normalisieren
data_head = normalice_header(data_head)
# Pandas DataFrame erstellen # Pandas DataFrame erstellen
data = DataFrame(data=data, columns=data_head) data = DataFrame(data=data, columns=data_head)
if debug: if debug:
print(data.head()) print(data.head())
data = data.set_index('t') #data = data.set_index('t')
#data._units = data_units #data._units = data_units
@ -205,10 +206,10 @@ def read_geosys(filename,
data['N'] = data['N'].astype(int) data['N'] = data['N'].astype(int)
# Daten sortieren # Daten sortieren
data.sort_index() #data.sort_index()
# Index normieren # Index normieren
data.index = data.index - data.index[0] #data.index = data.index - data.index[0]
return header, data return header, data

View File

@ -0,0 +1,2 @@
from .citt import *
from .sheartest import *

View File

@ -1,4 +1,14 @@
from .fit import model_cos import os
from csv import reader
from io import BytesIO
import lmfit as lm
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.fft as sfft
from pytestpavement.analysis import cosfunc
from pytestpavement.helper.filehasher import calc_hash_of_file
class DataSineLoad(): class DataSineLoad():
@ -7,26 +17,32 @@ class DataSineLoad():
""" """
def __init__(self, fname: str, debug: bool = False): def __init__(self,
fname: str,
debug: bool = False,
roundtemperature: bool = True):
self.meta = {'d': 150, 'speciment_height': 60} self.debug = debug
self.roundtemperature = roundtemperature
self.file = fname self.file = fname
self.val_col_names = ['time', 'T', 'f', 'N', 'F', 's_hor_sum'] self._run()
# Header names after standardization; check if exists def _run(self):
self.val_header_names = ['speciment_height'] self._file_exists()
self._set_parameter() self._set_parameter()
self._define_units()
self._file_to_bytesio()
self._calc_hash() self._calc_hash()
self._read_data() self._read_data()
self._standardize_data() self._standardize_data()
self._standardize_meta() self._standardize_meta()
if not debug: if self.roundtemperature:
self._replace_temperature()
self._calc_missiong_values() self._calc_missiong_values()
self._set_units() self._set_units()
@ -38,6 +54,9 @@ class DataSineLoad():
self._fit_data() self._fit_data()
def _file_exists(self):
assert os.path.exists(self.file)
def _set_parameter(self): def _set_parameter(self):
self.split_data_based_on_parameter = ['f'] self.split_data_based_on_parameter = ['f']
@ -45,47 +64,35 @@ class DataSineLoad():
self.col_as_int = ['N'] self.col_as_int = ['N']
self.col_as_float = ['T', 'F', 's_piston', 's_hor_1', 'f', 's_hor_sum'] self.col_as_float = ['T', 'F', 's_piston', 's_hor_1', 'f', 's_hor_sum']
self.val_col_names = ['time', 'T', 'f', 'N', 'F', 's_hor_sum']
# Header names after standardization; check if exists
self.val_header_names = ['speciment_height']
self.number_of_load_cycles_for_analysis = 5 self.number_of_load_cycles_for_analysis = 5
def _define_units(self):
self.unit_s = 1 #mm self.unit_s = 1 #mm
self.unit_F = 1 #N self.unit_F = 1 #N
self.unit_t = 1 / 1000. #s self.unit_t = 1 / 1000. #s
def _file_to_bytesio(self):
""" read data and save in memory """
with open(self.file, 'rb') as fh:
self.buf = BytesIO(fh.read())
def _calc_hash(self): def _calc_hash(self):
""" calculate the hash of the file """ """ calculate the hash of the file """
self.filehash = calc_hash_of_file(self.file)
#read t def _read_data(self):
algo = hashlib.sha1()
buffer_size = 65536
buffer_size = buffer_size * 1024 * 1024
while True:
data = self.buf.read(buffer_size)
if not data:
break
algo.update(data)
self.hex = algo.hexdigest()
self.buf.seek(0)
def _read_data(self, encoding='latin-1', skiprows=14, hasunits=True):
""" """
read data from Labor Hart, Spaltzugversuche Steifigkeit read data from Labor Hart, Spaltzugversuche Steifigkeit
""" """
# parameter
encoding = 'latin-1'
skiprows = 14
hasunits = True
splitsign = ':;'
# metadata from file # metadata from file
meta = {} meta = {}
splitsign = ':;'
with open(self.file, 'r', encoding=encoding) as f: with open(self.file, 'r', encoding=encoding) as f:
count = 0 count = 0
@ -230,6 +237,16 @@ class DataSineLoad():
return True return True
def _replace_temperature(self):
temperatures = self.data['T'].unique()
Tset = {}
for temperature in temperatures:
Tset[temperature] = round(temperature, -1)
self.data['T'] = self.data['T'].replace(Tset)
def _calc_missiong_values(self): def _calc_missiong_values(self):
cols = self.data.columns cols = self.data.columns
@ -292,7 +309,7 @@ class DataSineLoad():
N = df['N'].unique() N = df['N'].unique()
if len(N) > num: if len(N) > num:
df_sel = df[(df['N'] >= N[-num - 1, ]) & (df['N'] <= N[-2, ])] df_sel = df[(df['N'] >= N[-num - 1]) & (df['N'] <= N[-2])]
return df_sel return df_sel
else: else:
ValueError( ValueError(
@ -342,10 +359,10 @@ class DataSineLoad():
's_hor_2': 'Verformung ($S_2$) in mm' 's_hor_2': 'Verformung ($S_2$) in mm'
} }
fig, axs = plt.subplots(len(columns_analyse), #fig, axs = plt.subplots(len(columns_analyse),
1, # 1,
figsize=(8, len(columns_analyse) * 2), # figsize=(8, len(columns_analyse) * 2),
sharex=True) # sharex=True)
for idxcol, col in enumerate(columns_analyse): for idxcol, col in enumerate(columns_analyse):
@ -367,7 +384,7 @@ class DataSineLoad():
res_step1 = fit_sin_anstieg(x, y) res_step1 = fit_sin_anstieg(x, y)
mod = lm.models.Model(model_cos) mod = lm.models.Model(cosfunc)
mod.set_param_hint( mod.set_param_hint(
'd', 'd',
@ -443,7 +460,7 @@ class DataSineLoad():
yreg = model_cos(x, res[f'fit_a_{col}'], res[f'fit_b_{col}'], yreg = model_cos(x, res[f'fit_a_{col}'], res[f'fit_b_{col}'],
res[f'fit_d_{col}'], res[f'fit_e_{col}'], res[f'fit_d_{col}'], res[f'fit_e_{col}'],
res[f'fit_f_{col}']) res[f'fit_f_{col}'])
"""
plt.sca(axs[idxcol]) plt.sca(axs[idxcol])
plt.plot(x, y, label='Messdaten') plt.plot(x, y, label='Messdaten')
@ -469,6 +486,7 @@ class DataSineLoad():
plt.savefig(ofile) plt.savefig(ofile)
plt.close() plt.close()
"""
## Stiffness ## Stiffness
deltaF = res['fit_a_F'] deltaF = res['fit_a_F']
@ -479,6 +497,8 @@ class DataSineLoad():
res['E'] = (deltaF * (0.274 + nu)) / (h * deltaU) res['E'] = (deltaF * (0.274 + nu)) / (h * deltaU)
self.fit.append(res) self.fit.append(res)
#break
if self.debug:
break
self.fit = pd.DataFrame.from_records(self.fit) self.fit = pd.DataFrame.from_records(self.fit)

View File

@ -0,0 +1,637 @@
import os
import lmfit as lm
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.fft as sfft
import seaborn as sns
from pytestpavement.analysis.regression import fit_cos, fit_cos_eval
from pytestpavement.io.geosys import read_geosys
from pytestpavement.labtests.base import DataSineLoad
from pytestpavement.models.data import DataSheartest
from pytestpavement.models.sheartest import DynamicShearTestExtension
class ShearTest(DataSineLoad):
"""
Dynamic Shear Bounding Test
"""
def __init__(self,
fname: str,
debug: bool = False,
gap_width: float = 1.0,
roundtemperature: bool = True):
#set parameter
self.gap_width = gap_width
self.debug = debug
self.file = fname
self.roundtemperature = roundtemperature
# process file
self._run()
def plot_fited_data(self, opath=None, pkname=None, r2min=0.99):
ylabel_dict = {
'F': 'Kraft in N',
's_vert_sum': 'norm. mittlerer Scherweg\n $S_{mittel}$ in mm',
's_piston': 'norm. Kolbenweg\n in mm',
's_vert_1': 'Scherweg\n $S_1$ in mm',
's_vert_2': 'Scherweg\n $S_2$ in mm'
}
columns_analyse = [
'F',
's_vert_sum',
's_vert_1',
's_vert_2',
's_piston',
]
if not (opath is None) & (pkname is None):
showplot = False
opath = os.path.join(opath, pkname, 'raw_data')
if not os.path.exists(opath):
os.makedirs(opath)
else:
showplot = True
for i, fit in self.fit.iterrows():
if not any([fit['r2_F'] < r2min, fit['r2_s_vert_sum'] < r2min]):
continue
data = self.data[int(fit['idx_data'])]
if data is None:
continue
freq = data['f'].unique()[0]
sigma = data['sigma_normal'].unique()[0]
s = data['extension'].unique()[0]
T = data['T'].unique()[0]
fig, axs = plt.subplots(len(columns_analyse),
1,
figsize=(8, len(columns_analyse) * 2),
sharex=True)
for idxcol, col in enumerate(columns_analyse):
x, y = data.index, data[col]
#add fit
f = self.fit.iloc[i]
parfit = {}
for k in ['amp', 'freq', 'phase', 'offset', 'slope']:
parfit[k] = f[f'fit_{k}_{col}']
yreg = fit_cos_eval(x, parfit)
if col in ['s_piston', 's_vert_sum']:
y = y - np.mean(y)
yreg = yreg - np.mean(yreg)
plt.sca(axs[idxcol])
plt.plot(x, y, label='Messdaten')
r2 = np.round(f[f'r2_{col}'], 3)
plt.plot(x,
yreg,
alpha=0.7,
label=f'Regression ($R^2 = {r2}$)')
if not ('F' in col):
s = f['extension']
parline = dict(lw=0.4,
ls='--',
color='lightgrey',
alpha=0.4,
label='Bereich des zul. Scherweges')
plt.axhspan(-s, s, **parline)
if idxcol == len(columns_analyse) - 1:
plt.xlabel('Zeit in s')
plt.ylabel(ylabel_dict[col])
plt.legend()
plt.tight_layout()
if showplot:
plt.show()
break
else:
ofile = f'{T}deg_{sigma}MPa_{freq}Hz_{s}mm'.replace('.', 'x')
ofile = os.path.join(opath, ofile + '.pdf')
plt.savefig(ofile)
plt.close()
class ShearTestExtension(ShearTest):
def runfit(self):
self._fit_data()
def save(self, material1, material2, bounding, meta: dict):
for i, fit in self.fit.iterrows():
data = self.data[int(fit['idx_data'])]
#check if data in db
n = DynamicShearTestExtension.objects(
f=fit['f'],
sigma_normal=fit['sigma_normal'],
T=fit['T'],
extension=fit['extension'],
material1=material1,
material2=material2,
bounding=bounding,
filehash=self.filehash,
).count()
if n > 0: continue
#save data
rdata = DataSheartest(
time=data.index.values,
F=data['F'].values,
N=data['N'].values,
s_vert_1=data['s_vert_1'].values,
s_vert_2=data['s_vert_2'].values,
s_vert_sum=data['s_vert_sum'].values,
s_piston=data['s_piston'].values,
).save()
# save fit
values = {}
for col in ['F', 's_vert_1', 's_vert_2', 's_vert_sum']:
values[f'fit_amp_{col}'] = fit[f'fit_amp_{col}']
values[f'fit_freq_{col}'] = fit[f'fit_freq_{col}']
values[f'fit_phase_{col}'] = fit[f'fit_phase_{col}']
values[f'fit_offset_{col}'] = fit[f'fit_offset_{col}']
values[f'fit_slope_{col}'] = fit[f'fit_slope_{col}']
values.update(meta)
try:
r = DynamicShearTestExtension(
#metadata
f=fit['f'],
sigma_normal=fit['sigma_normal'],
T=fit['T'],
extension=fit['extension'],
filehash=self.filehash,
material1=material1,
material2=material2,
bounding=bounding,
#results
data=rdata,
stiffness=fit['G'],
#
**values).save()
except:
rdata.delete()
def _set_parameter(self):
self.split_data_based_on_parameter = [
'T', 'sigma_normal', 'f', 'extension'
]
self.col_as_int = ['N']
self.col_as_float = ['T', 'F', 'f', 's_vert_sum']
self.val_col_names = ['time', 'T', 'f', 'N', 'F', 's_vert_sum']
# Header names after standardization; check if exists
self.val_header_names = ['speciment_diameter']
self.columns_analyse = [
'F', 's_vert_sum', 's_vert_1', 's_vert_2', 's_piston'
]
self.number_of_load_cycles_for_analysis = 5
def _calc_missiong_values(self):
cols = self.data.columns
for c in ['vert']:
if not f's_{c}_sum' in cols:
self.data[f's_{c}_sum'] = self.data[[f's_{c}_1', f's_{c}_2'
]].sum(axis=1).div(2.0)
def _fit_data(self):
self.fit = []
for idx_data, data in enumerate(self.data):
if data is None: continue
data.index = data.index - data.index[0]
res = {}
res['idx_data'] = int(idx_data)
# Fitting
freq = float(np.round(data['f'].mean(), 4))
if (self.debug):
sigma_normal = np.round(data['sigma_normal'].mean(), 3)
T = np.round(data['T'].mean(), 3)
for idxcol, col in enumerate(self.columns_analyse):
if not col in data.columns: continue
x = data.index.values
y = data[col].values
# Fourier Transformation
"""
dt = np.diff(x).mean() #mean sampling rate
n = len(x)
res[f'psd_{col}'] = sfft.rfft(y) #compute the FFT
res[f'freq_{col}'] = sfft.rfftfreq(n, dt)
"""
res_fit = fit_cos(x, y, freq=freq, constfreq=True)
res[f'r2_{col}'] = res_fit['r2']
res[f'fit_amp_{col}'] = res_fit['amp']
res[f'fit_freq_{col}'] = res_fit['freq']
res[f'fit_phase_{col}'] = res_fit['phase']
res[f'fit_offset_{col}'] = res_fit['offset']
res[f'fit_slope_{col}'] = res_fit['slope']
## Schersteifigkeit berechnen
deltaF = res['fit_amp_F']
deltaS = res['fit_amp_s_vert_sum']
A = np.pi * self.meta['speciment_diameter']**2 / 4
tau = deltaF / A
gamma = deltaS / self.gap_width
res['G'] = tau / gamma
#metadaten
for c in ['T', 'extension', 'sigma_normal', 'f']:
res[c] = data[c][0]
self.fit.append(res)
if (self.debug) & (len(self.fit) > 5):
break
self.fit = pd.DataFrame.from_records(self.fit)
def plot_results(self, opath=None, pkname=None, r2min=0.96):
if not (opath is None) & (pkname is None):
showplot = False
opath = os.path.join(opath, pkname)
if not os.path.exists(opath):
os.makedirs(opath)
else:
showplot = True
dfplot = self.fit.copy()
for col in ['extension', 'fit_amp_s_vert_sum']:
dfplot[col] = dfplot[col].mul(1000)
fig, ax = plt.subplots()
xticks = list(dfplot['extension'].unique())
df = dfplot
df = df[(df['r2_F'] >= r2min) & (df['r2_s_vert_sum'] >= r2min)]
sns.scatterplot(
data=df,
x='fit_amp_s_vert_sum',
y='G',
hue='T',
ax=ax,
alpha=0.7,
#size=150,
size="G",
sizes=(50, 160),
edgecolor='k',
palette='muted',
zorder=10)
df = dfplot
df = df[(df['r2_F'] < r2min) & (df['r2_s_vert_sum'] < r2min)]
if not df.empty:
sns.scatterplot(data=df,
x='fit_amp_s_vert_sum',
y='G',
facecolor='grey',
alpha=0.5,
legend=False,
zorder=1,
ax=ax)
ax.set_xlabel('gemessene Scherwegamplitude in $\mu m$')
ax.set_ylabel('Scherseteifigkeit in MPa/mm')
ax.set_xticks(xticks)
ax.grid()
if not showplot:
ofile = os.path.join(opath, 'shearstiffness.pdf')
plt.savefig(ofile)
plt.show()
def plot_stats(self, opath=None, pkname=None, r2min=0.96):
if not (opath is None) & (pkname is None):
showplot = False
opath = os.path.join(opath, pkname)
if not os.path.exists(opath):
os.makedirs(opath)
else:
showplot = True
dfplot = self.fit.copy()
for col in ['extension', 'fit_amp_s_vert_sum']:
dfplot[col] = dfplot[col].mul(1000)
#r2
df = self.fit
fig, axs = plt.subplots(1, 2, sharey=True, sharex=True)
parscatter = dict(palette='muted', alpha=0.7, edgecolor='k', lw=0.3)
# r2
ax = axs[0]
sns.scatterplot(data=df,
x='fit_amp_s_vert_sum',
y='r2_F',
hue='T',
ax=ax,
**parscatter)
ax.set_ylabel('Bestimmtheitsmaß $R^2$')
ax.set_title('Kraft')
ax = axs[1]
sns.scatterplot(data=df,
x='fit_amp_s_vert_sum',
y='r2_s_vert_sum',
hue='T',
legend=False,
ax=ax,
**parscatter)
ax.set_ylabel('$R^2$ (S_{mittel})')
ax.set_title('mittlerer Scherweg')
for ax in axs.flatten():
ax.grid()
ax.set_xlabel('gemessene Scherwegamplitude in $\mu m$')
plt.tight_layout()
if not showplot:
ofile = os.path.join(opath, 'stats_r2.pdf')
plt.savefig(ofile)
plt.show()
class ShearTestExtensionLaborHart(ShearTestExtension):
def _define_units(self):
self.unit_F = 1 / 1000.0 #N
self.unit_t = 1 / 1000. #s
def _set_units(self):
#for col in ['F']:
# self.data[col] = self.data[col].mul(self.unit_F)
for col in ['time']:
self.data[col] = self.data[col].mul(self.unit_t)
return True
def _read_data(self):
"""
read data from Labor Hart
"""
# parameter
encoding = 'latin-1'
skiprows = 14
hasunits = True
splitsign = ':;'
# metadata from file
meta = {}
with open(self.file, 'r', encoding=encoding) as f:
count = 0
for line in f:
count += 1
#remove whitespace
linesplit = line.strip()
linesplit = linesplit.split(splitsign)
if len(linesplit) == 2:
meta[linesplit[0]] = linesplit[1]
if count >= skiprows:
break
# data
data = pd.read_csv(self.file,
encoding=encoding,
skiprows=skiprows,
decimal=',',
sep=';')
## add header to df
with open(self.file, 'r', encoding=encoding) as f:
count = 0
for line in f:
count += 1
if count >= skiprows:
break
head = line.split(';')
data.columns = head
#clean data
data = data.dropna(axis=1)
#define in class
self.meta = meta
self.data = data
return True
def _standardize_meta(self):
keys = list(self.meta.keys())
for key in keys:
if any(map(key.__contains__, ['Probenbezeichnung'])):
self.meta['speciment'] = self.meta.pop(key)
elif any(map(key.__contains__, ['Datum/Uhrzeit'])):
self.meta['datetime'] = self.meta.pop(key)
try:
self.meta['datetime'] = pd.to_datetime(
self.meta['datetime'])
except:
pass
elif any(map(key.__contains__, ['Probenhöhe'])):
self.meta['speciment_height'] = float(
self.meta.pop(key).replace(',', '.'))
elif any(map(key.__contains__, ['Probendurchmesser'])):
self.meta['speciment_diameter'] = float(
self.meta.pop(key).replace(',', '.'))
elif any(map(key.__contains__, ['Solltemperatur'])):
self.meta['temperature'] = float(
self.meta.pop(key).replace(',', '.'))
elif any(map(key.__contains__, ['Prüfbedingungen'])):
self.meta['test_version'] = self.meta.pop(key)
elif any(map(key.__contains__, ['Name des VersAblf'])):
self.meta['test'] = self.meta.pop(key)
elif any(map(key.__contains__, ['Prüfer'])):
self.meta['examiner'] = self.meta.pop(key)
return True
def _standardize_data(self):
colnames = list(self.data.columns)
for i, col in enumerate(colnames):
if col == 'TIME':
colnames[i] = 'time'
#set values
elif col == 'Sollwert Frequenz':
colnames[i] = 'f'
elif col == 'SollTemperatur':
colnames[i] = 'T'
elif col == 'Max Scherweg':
colnames[i] = 'extension'
elif col == 'Sollwert Normalspannung':
colnames[i] = 'sigma_normal'
elif col == 'Impulsnummer':
colnames[i] = 'N'
# measurements
elif col == 'Load':
colnames[i] = 'F'
elif col == 'Position':
colnames[i] = 's_piston'
elif col == 'VERTIKAL Links':
colnames[i] = 's_vert_1'
elif col == 'VERTIKAL Rechts':
colnames[i] = 's_vert_2'
elif col == 'HORIZONTAL links':
colnames[i] = 's_hor_1'
elif col == 'HOIZONTAL Rechts':
colnames[i] = 's_hor_2'
self.data.columns = colnames
class ShearTestExtensionTUDresdenGeosys(ShearTestExtension):
def _define_units(self):
self.unit_S = 1 / 1000.0 #N
def _set_units(self):
for col in [
's_vert_sum', 's_vert_1', 's_vert_2', 's_piston', 'extension'
]:
self.data[col] = self.data[col].mul(self.unit_S)
return True
def _read_data(self):
"""
read data from Labor Hart
"""
# parameter
encoding = 'latin-1'
skiprows = 14
hasunits = True
splitsign = ':;'
head, data = read_geosys(self.file, '015')
#define in class
self.meta = head
self.data = data
return True
def _standardize_meta(self):
keys = list(self.meta.keys())
for key in keys:
if key == 'd':
self.meta['speciment_diameter'] = self.meta.pop(key)
return True
def _standardize_data(self):
colnames = list(self.data.columns)
for i, col in enumerate(colnames):
#set values
if col == 'soll temperature':
colnames[i] = 'T'
elif col == 'soll extension':
colnames[i] = 'extension'
elif col == 'soll sigma':
colnames[i] = 'sigma_normal'
elif col == 'soll frequency':
colnames[i] = 'f'
elif col == 'Number of vertical cycles':
colnames[i] = 'N'
# measurements
elif col == 'vertical load from hydraulic pressure':
colnames[i] = 'F'
elif col == 'vertical position from hydraulic pressure':
colnames[i] = 's_piston'
elif col == 'Vertical position from LVDT 1':
colnames[i] = 's_vert_1'
elif col == 'Vertical position from LVDT 2':
colnames[i] = 's_vert_2'
self.data.columns = colnames

View File

@ -1,10 +1,3 @@
from .citt import * from .citt import *
from .material import * from .material import *
from .sheartest import * from .sheartest import *
__all__ = [
# Spaltzug
"CITTSiffness",
#Dynamischer Schertest
"DynamicShearTestExtension",
]

View File

@ -0,0 +1,33 @@
import datetime
from xml.dom.minidom import Document
from mongoengine import *
class RawData(Document):
date = DateTimeField(default=datetime.datetime.now,
wtf_options={"render_kw": {
"step": "60"
}})
meta = {
'allow_inheritance': True,
'index_opts': {},
'index_background': True,
'index_cls': False,
'auto_create_index': True,
'collection': 'rawdata',
}
class DataSheartest(RawData):
# data
time = ListField(FloatField())
F = ListField(FloatField())
N = ListField(IntField())
s_vert_1 = ListField(FloatField())
s_vert_2 = ListField(FloatField())
s_vert_sum = ListField(FloatField())
s_piston = ListField(FloatField())

View File

@ -38,7 +38,7 @@ class Bitumen(Material):
young_modulus = FloatField() young_modulus = FloatField()
class Expoxy(Material): class Epoxy(Material):
name = StringField() name = StringField()
material = StringField() material = StringField()

View File

@ -2,6 +2,7 @@ import datetime
from mongoengine import * from mongoengine import *
from .data import DataSheartest
from .material import Material from .material import Material
@ -23,9 +24,11 @@ class DynamicShearTest(Document):
project = StringField(required=True) project = StringField(required=True)
workpackage = StringField() workpackage = StringField()
material1 = ReferenceField(Material, required=True) material1 = LazyReferenceField(Material, required=True)
material2 = ReferenceField(Material, required=True) material2 = LazyReferenceField(Material, required=True)
bounding = ReferenceField(Material, required=True) bounding = LazyReferenceField(Material, required=True)
gap_width = FloatField(default=1.0)
meta = { meta = {
'allow_inheritance': True, 'allow_inheritance': True,
@ -40,45 +43,42 @@ class DynamicShearTest(Document):
class DynamicShearTestExtension(DynamicShearTest): class DynamicShearTestExtension(DynamicShearTest):
#metadata #metadata
f_set = FloatField() f = FloatField()
sigma_hor_set = FloatField() sigma_normal = FloatField()
T_set = FloatField() T = FloatField()
s_set = FloatField() extension = FloatField()
#results #results
data = LazyReferenceField(DataSheartest,
required=True,
reverse_delete_rule=CASCADE)
stiffness = FloatField() stiffness = FloatField()
#fit parameter #fit parameter
## F ## F
fit_a_F = FloatField() fit_amp_F = FloatField()
fit_b_F = FloatField() fit_freq_F = FloatField()
fit_d_F = FloatField() fit_phase_F = FloatField()
fit_e_F = FloatField() fit_offset_F = FloatField()
fit_f_F = FloatField() fit_slope_F = FloatField()
r2_F = FloatField()
## S1 ## S1
fit_a_s_hor_1 = FloatField() fit_amp_s_vert_1 = FloatField()
fit_b_s_hor_1 = FloatField() fit_freq_s_vert_1 = FloatField()
fit_d_s_hor_1 = FloatField() fit_phase_s_vert_1 = FloatField()
fit_e_s_hor_1 = FloatField() fit_offset_s_vert_1 = FloatField()
fit_f_s_hor_1 = FloatField() fit_slope_s_vert_1 = FloatField()
r2_s_hor_1 = FloatField() r2_s_vert_1 = FloatField()
## S2 ## S2
fit_a_s_hor_2 = FloatField() fit_amp_s_vert_2 = FloatField()
fit_b_s_hor_2 = FloatField() fit_freq_s_vert_2 = FloatField()
fit_d_s_hor_2 = FloatField() fit_phase_s_vert_2 = FloatField()
fit_e_s_hor_2 = FloatField() fit_offset_s_vert_2 = FloatField()
fit_f_s_hor_2 = FloatField() fit_slope_s_vert_2 = FloatField()
r2_s_hor_2 = FloatField() r2_s_vert_2 = FloatField()
## S-Sum ## S-Sum
fit_a_s_hor_sum = FloatField() fit_amp_s_vert_sum = FloatField()
fit_b_s_hor_sum = FloatField() fit_freq_s_vert_sum = FloatField()
fit_d_s_hor_sum = FloatField() fit_phase_s_vert_sum = FloatField()
fit_e_s_hor_sum = FloatField() fit_offset_s_vert_sum = FloatField()
fit_f_s_hor_sum = FloatField() fit_slope_s_vert_sum = FloatField()
r2_s_hor_sum = FloatField() r2_s_vert_sum = FloatField()
# data
time = ListField(FloatField())
F = ListField(FloatField())
N = ListField(IntField())
s_hor_1 = ListField(FloatField())
s_hor_2 = ListField(FloatField())

View File

@ -1,9 +0,0 @@
# versuche
from .schichtenverbund import *
__all__ = [
"fit_single_data",
"TestSchichtenverbundV2GeoSys",
"TestSchichtenverbundV2GeoSysExtractedEMPA",
]

View File

@ -1,5 +0,0 @@
import numpy as np
def model_cos(t, a, b, d, e, f):
return a * np.cos(2 * np.pi * f * t + b) + e * t + d

View File

@ -1,369 +0,0 @@
import os
import sys
from multiprocessing import Pool, cpu_count
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from aenum import enum
from fsutil import exists
from pytestpavement.analysis import fit_cos, fit_cos_eval
from pytestpavement.io import read_geosys
def fit_single_data(g):
"""
iterate over data and fit
"""
try:
i, d = g
d = d.loc[i]
#d = d.reset_index()
Ns = d['N'].unique()
e = d[(d['N'] > Ns[-7]) & (d['N'] <= Ns[-2])].copy()
if e.empty:
return
e.index = e.index - e.index[0]
e = e.reset_index()
res_par = {}
res_par['T_set'] = i[0]
res_par['sigma_set'] = i[1]
res_par['f_set'] = float(i[2])
res_par['ext_set'] = i[3]
r2 = []
for col in ['F', 's1', 's2']:
x = e['time'].values
y = e[col].values
res_step = fit_cos(x, y, freq=res_par['f_set'])
r2.append(res_step['r2'])
for key in res_step.keys():
res_par[key + f'_{col}'] = res_step[key]
except:
return
return res_par
class TestSchichtenverbundV2GeoSys():
"""
read and process test of type Schichtenverbund
Configuration created for TU Dresden
...
Attributes
----------------
filename : str
filename to read
tablenum : str
table number of geosys file
Methodes
-------------
Returns
-------------
"""
def __init__(self,
filename: str,
diameter: float = 100.0,
spalt: float = 1.0,
tablenum: str = '013',
debug: bool = False,
plot_fit: bool = False,
plot_fit_error: bool = True):
self.file = filename
self.diameter = diameter
self.spalt = spalt
self._tablenum = tablenum
self._plot = plot_fit
self._plot_on_error = plot_fit_error
self._debug = debug
self.data = None
self._check_file_exists()
self._run()
def _run(self):
if self._debug:
print('debug mode')
self._read()
self._normalize_data()
self._set_units()
self._check_data()
self._transform_data()
self._fit_data()
self._calc_Es()
def __str__(self):
return f"filename: {self.file}, table number: {self._tablenum}"
def _check_file_exists(self):
assert os.path.exists(self.file)
def _read(self):
meta, data = read_geosys('./data/raw/TU Dresden/PK4.txt',
self._tablenum,
debug=self._debug)
self.diameter = meta['d']
data = data.reset_index()
self.data = data
def _normalize_data(self):
col = list(self.data.columns)
for i, d in enumerate(col):
if d == 't':
col[i] = 'time'
elif d == 'f':
col[i] = 'f_set'
elif d == 's_vert_1':
col[i] = 's1'
elif d == 's_vert_2':
col[i] = 's2'
self.data.columns = col
if self._debug:
print(self.data.columns)
def _set_units(self):
return
def _check_data(self):
must_have_values = [
'T_set',
'sigma_set',
'f_set',
'ext_set',
'time',
'F',
's1',
's2',
'N',
]
check = [item in self.data.columns for item in must_have_values]
if not all(check):
print('Error in Parameters:')
for i, c in enumerate(check):
if c == False:
p = must_have_values[i]
print(f'\t - {p}')
print(self.data.head())
assert all(check)
pass
#
def _transform_data(self):
self.data = self.data.set_index(
['T_set', 'sigma_set', 'f_set', 'ext_set', 'time']).sort_index()
def _fit_data(self):
if not self._debug:
with Pool(cpu_count()) as pool:
ret_list = pool.map(
fit_single_data,
[(i, d) for i, d in self.data.groupby(level=[0, 1, 2, 3])])
else:
ret_list = []
for i, d in self.data.groupby(level=[0, 1, 2, 3]):
ret_list.append(fit_single_data((i, d)))
self.res = pd.DataFrame.from_dict(
[r for r in ret_list if isinstance(r, dict)])
self.res = self.res.set_index(
['T_set', 'sigma_set', 'f_set', 'ext_set']).sort_index()
#self.res.sort_index(axis=0, inplace=True)
#self.res.sort_index(axis=1, inplace=True)
def _plot_single_data(self, i):
ylabels = {
'F': 'Force in N',
's1': 'Displacement $s_1$ in $\mu m$',
's2': 'Displacement $s_2$ in $\mu m$'
}
par = self.res.loc[i].to_dict()
df = self.data.loc[i]
Ns = df['N'].unique()
e = df[(df['N'] > Ns[-7]) & (df['N'] <= Ns[-2])].copy()
e.index = e.index - e.index[0]
if e.empty:
return
fig, axs = plt.subplots(3, 1, sharex=True)
fig.set_figheight(1.5 * fig.get_figheight())
for i, col in enumerate(['F', 's1', 's2']):
ax = axs[i]
x, y = e.index, e[col]
ax.plot(x, y, c='k', label='data')
par_sel = [key for key in par.keys() if col in key]
par_sel = dict((k.split('_')[0], par[k]) for k in par_sel)
ys = fit_cos_eval(x, par_sel)
r2_sel = np.round(par_sel['r2'], 3)
ax.plot(x, ys, c='C1', label=f'fit (R² = {r2_sel}')
ax.legend(loc=0)
ax.set_ylabel(ylabels[col])
ax.set_xlabel('Time in s')
plt.tight_layout()
plt.show()
def plot_fitted_data(self, num: int = 7):
"""
plot fit
"""
counter = 0
for i, r in self.res.groupby(level=[0, 1, 2, 3]):
self._plot_single_data(i)
counter += 1
if (num != None) & (counter >= num):
break
def plot_fitted_data_error(self, rmin: float = 0.9):
"""
plot fit
"""
sel_res = self.res[(self.res['r2_F'] <= rmin)]
if sel_res.empty:
print('no errors')
return
for i, r in sel_res.groupby(level=[0, 1, 2, 3]):
self._plot_single_data(i)
def _calc_Es(self):
area = np.pi * self.diameter**2 / 4
ampF = self.res['amp_F']
ampS = self.res[['amp_s1', 'amp_s2']].mean(axis=1)
tau = ampF.div(area)
gamma = ampS.div(1000.0).div(self.spalt)
self.res['Es'] = tau / gamma
class TestSchichtenverbundV2GeoSysExtractedEMPA(TestSchichtenverbundV2GeoSys):
def _read(self):
if self._debug:
nrows = 15000
else:
nrows = None
self.data = pd.read_csv(self.file, sep='\t', decimal='.', nrows=nrows)
self.data.drop(index=[0], inplace=True)
self.data.dropna(axis=0, inplace=True)
for col in self.data.columns:
self.data[col] = pd.to_numeric(self.data[col])
def _normalize_data(self):
col = list(self.data.columns)
for i, d in enumerate(col):
if 'soll temperature' in d:
col[i] = 'T_set'
elif 'soll sigma' in d:
col[i] = 'sigma_set'
elif 'soll frequency' in d:
col[i] = 'f_set'
elif 'soll extension' in d:
col[i] = 'ext_set'
elif 'vertical load from hydraulic pressure' in d:
col[i] = 'F'
elif 'Vertical position from LVDT 1' in d:
col[i] = 's1'
elif 'Vertical position from LVDT 2' in d:
col[i] = 's2'
elif 'Zyklenzähler' in d:
col[i] = 'N'
self.data.columns = col